-->

Saturday, June 2, 2018

BIG & DEADLY ELECTRIC EELS - Amazon River Monsters - YouTube
src: i.ytimg.com

The electric eel (Electrophorus electricus) is a South American electric fish, and the only species in its genus. Despite the name, it is not an eel, but rather a knifefish.


Video Electric eel



Anatomy

The electric eel has an elongated, cylindrical body, typically growing to about 2 m (6 ft 7 in) in length, and 20 kg (44 lb) in weight, making them the largest species of the Gymnotiformes. Their coloration is dark gray-brown on the back and yellow or orange on the belly. Mature females have a darker color on the belly. They have no scales. The mouth is square, and positioned at the end of the snout. The anal fin extends the length of the body to the tip of the tail.

As in other ostariophysan fishes, the swim bladder has two chambers. The anterior chamber is connected to the inner ear by a series of small bones derived from neck vertebrae called the Weberian apparatus, which greatly enhances its hearing capability. The posterior chamber extends along the whole length of the body and maintains the fish's buoyancy. E. electricus has a well-developed sense of hearing. This fish has a vascularized respiratory system with gas exchange occurring through epithelial tissue in its buccal cavity. As obligate air-breathers, electric eels must rise to the surface every ten minutes or so to inhale before returning to the bottom. Nearly eighty percent of the oxygen used by the fish is obtained in this way.

Despite its name, the electric eel is not closely related to the true eels (Anguilliformes) but is a member of the neotropical knifefish order (Gymnotiformes), which is more closely related to the catfish.


Maps Electric eel



Physiology

The electric eel has three pairs of abdominal organs that produce electricity: the main organ, the Hunter's organ, and the Sach's organ. These organs make up four fifths of its body, and give the electric eel the ability to generate two types of electric organ discharges: low voltage and high voltage. These organs are made of electrocytes, lined up so a current of ions can flow through them and stacked so each one adds to a potential difference.

When the eel finds its prey, the brain sends a signal through the nervous system to the electrocytes. This opens the ion channels, allowing sodium to flow through, reversing the polarity momentarily. By causing a sudden difference in electric potential, it generates an electric current in a manner similar to a battery, in which stacked plates each produce an electric potential difference.

In the electric eel, some 5,000 to 6,000 stacked electroplaques can make a shock up to 860 volts and 1 ampere of current (860 watts) for two milliseconds (ms). Such a shock is extremely unlikely to be deadly for an adult human, due to the very short duration of the discharge. Atrial fibrillation requires that roughly 700 mA be delivered across the heart muscle for 30 ms or more, far longer than the eel can produce. Still, this level of current is reportedly enough to produce a brief and painful numbing shock likened to a stun gun discharge, which due to the voltage can be felt for some distance from the fish; this is a common risk for aquarium caretakers and biologists attempting to handle or examine electric eels.

The Sach's organ is associated with electrolocation. Inside the organ are many muscle-like cells, called electrocytes. Each cell can only produce 0.15 V, though the organ can transmit a signal of nearly 10 V overall in amplitude at around 25 Hz in frequency. These signals are emitted by the main organ; the Hunter's organ can emit signals at rates of several hundred hertz.

The electric eel is unique among the Gymnotiformes in having large electric organs that can produce potentially lethal discharges that allow them to stun prey. Larger voltages have been reported, but the typical output is sufficient to stun or deter virtually any animal. Juveniles produce smaller voltages (about 100 V). They can vary the intensity of the electric discharge, using lower discharges for hunting and higher intensities for stunning prey or defending themselves. They can also concentrate the discharge by curling up and making contact at two points along its body. When agitated, they can produce these intermittent electric shocks over at least an hour without tiring.

The electric eel also possesses high frequency-sensitive tuberous receptors, which are distributed in patches over its body. This feature is apparently useful for hunting other Gymnotiformes.

Electric eels have been used as a model in the study of bioelectrogenesis. The species is of some interest to researchers, who make use of its acetylcholinesterase and adenosine triphosphate.

Michael Faraday extensively tested the electrical properties of an electric eel, imported from Suriname. For a span of four months, Faraday carefully and humanely measured the electrical impulses produced by the animal by pressing shaped copper paddles and saddles against the specimen. Through this method, Faraday determined and quantified the direction and magnitude of electric current, and proved the animal's impulses were in fact electrical by observing sparks and deflections on a galvanometer.

Bionics

Researchers at Yale University and the National Institute of Standards and Technology argue artificial cells could be built that not only replicate the electrical behavior of electric eel cells, but also improve on them. Artificial versions of the eel's electricity-generating cells could be developed as a power source for medical implants and other microscopic devices.


Biomimetic potential of electric eels - Blogionik
src: blogionik.org


Ecology and life history

Habitat

Electric eels inhabit fresh waters of the Amazon and Orinoco River basins in South America, in floodplains, swamps, creeks, small rivers, and coastal plains. They often live on muddy bottoms in calm or stagnant waters.

Feeding ecology

Electric eels feed on invertebrates, although adult eels may also consume fish and small mammals, such as rats. First-born hatchlings eat other eggs and embryos from later clutches. The juveniles eat invertebrates, such as shrimp and crabs.

Reproduction

The electric eel is known for its unusual breeding behavior. In the dry season, a male eel makes a nest from his saliva into which the female lays her eggs. As many as 3,000 young hatch from the eggs in one nest. Males grow to be larger than females by about 35 cm (14 in).


Electric eels curl up to double their voltage | Science | AAAS
src: www.sciencemag.org


In zoos and private collections

These fish have always been sought after by some animal collectors, but catching them is difficult, because the only reasonable option is to make the eels tired by continually discharging their electricity. The fish's electric organs eventually become completely discharged, allowing the collector to wade into the water in comparative safety.

Keeping electric eels in captivity is difficult and mostly limited to zoos and aquaria, although a few hobbyists have kept them as pets.

The Tennessee Aquarium in the United States is home to an electric eel. Named Miguel Wattson, the eel's exhibit is wired to a small computer that sends out a prewritten tweet when it emits electricity at a high enough threshold.


Facts of Electric Eel Fish | மின்சார ஈல் | Amazing Libro ...
src: i.ytimg.com


Taxonomic history

The species is so unusual that it has been reclassified several times. When originally described by Carl Linnaeus in 1766, he used the name Gymnotus electricus, placing it in the same genus as Gymnotus carapo (banded knifefish) which he had described several years earlier. It was only about a century later, in 1864, that the electric eel was moved to its own genus Electrophorus by Theodore Gill.

Later the electric eel was considered sufficiently distinct to have its own family, Electrophoridae, but it has since been merged back into the family Gymnotidae, alongside Gymnotus.


Picture of the Week: Electric Eel
src: www.sciencefriday.com


Footnotes


Electric eel | Smithsonian's National Zoo
src: nationalzoo.si.edu


References

  • Catania, K., "The Shocking Predatory Strike of the Electric Eel", Science, Vol.346, No.6214, (5 December 2014), pp. 1231-1234.
  • Catania, K.C., "Leaping Eels Electrify Threats, Supporting Humboldt's Account of a Battle with Horses", Proceedings of the National Academy of Sciences, Vol.113, No.13 (21 June 2016), pp.6979-6984.
  • Catania, K.C., "Power Transfer to a Human during an Electric Eel's Shocking Leap", Current Biology, Vol.27, No.18, (25 September 2017), pp.2887-2891.
  • Finger S., "Dr. Alexander Garden, a Linnaean in Colonial America, and the Saga of Five 'Electric Eels'", Perspectives in Biology and Medicine, Vol.53, No.3, (Summer 2010), pp. 388-406.
  • Finger, S. & Piccolino, M., The Shocking History of Electric Fishes: From Ancient Epochs to the Birth of Modern Neurophysiology, Oxford University Press, (New York), 2011.
  • Gervais, R. "Phenomenological Understanding and Electric Eels". Theoria. 32 (3): 293-302. doi:10.1387/theoria.17294. 
  • Plumb, G., "The 'Electric Stroke' and the 'Electric Spark': Anatomists and Eroticism at George Baker's Electric Eel Exhibition in 1776 and 1777", Endeavour, Vol.34, No.3, (September 2010), pp. 87-94.
  • Traeger, L.L.; Sabat, G.; Barrett-Wilt, G.A.; Wells, G.B.; Sussman, M.R. "A Tail of Two Voltages: Proteomic Comparison of the Three Electric Organs of the Electric Eel". Science Advances. 3 (7): e1700523. doi:10.1126/sciadv.1700523. 
  • Turkel, W.J., Spark from the Deep: How Shocking Experiments with Strongly Electric Fish Powered Scientific Discovery, Johns Hopkins University Press, (Baltimore), 2013.

Pax on both houses: Electric Eel Doubles Shock Value By Curling Up ...
src: kids.nationalgeographic.com


External links

  • 1954 educational film about the electric eel from the Moody Institute of Science

Source of article : Wikipedia